
Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Bugfixing is fun
Tips and tricks for debugging KDE applications

David Faure

July 6th 2009

David Faure – Bugfixing is fun – 1/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Outline

1 Reproducing bugs

2 Simplify the problem

3 Scientific debugging

4 Observing facts

5 Assertions

6 Fix!

7 And now...

David Faure – Bugfixing is fun – 2/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

What is a bug?
A rampant insect, but also...

A Bug’s Life

Defect ⇒ Infection(s) ⇒ Failure

Defect: the “bug” in the code

Infection: the effect of the “bug” on program state
(variables)

Failure: the observable result of the “bug” (e.g.
crash)

Example

int a = computeValue();

int b = a - 1;

int c = 1 / b;

David Faure – Bugfixing is fun – 3/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Outline

1 Reproducing bugs

2 Simplify the problem

3 Scientific debugging

4 Observing facts

5 Assertions

6 Fix!

7 And now...

David Faure – Bugfixing is fun – 4/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Reproducing bugs
one is not enough

Deterministic bugs

No problem, go to next slide

Non-deterministic bugs

Run the program in valgrind (memcheck), to detect
use of uninitialized data

Threading: run the program in helgrind, to detect
races

Write automated tests covering as many cases as
possible

Simulate random input until bug occurs

Postpone until reproduceable :-)

David Faure – Bugfixing is fun – 5/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Outline

1 Reproducing bugs

2 Simplify the problem

3 Scientific debugging

4 Observing facts

5 Assertions

6 Fix!

7 And now...

David Faure – Bugfixing is fun – 6/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Simplifying the problem
Because size matters

Proceed by binary search, reducing input size by half
every time. Manually or automatically (ddmin algorithm).

Example

Large HTML page crashes konqueror

Large mail crashes kontact

Error when calling program with 20 arguments

LaTeX error while writing this presentation

Many user actions ⇒ find minimum set

Guilty commit: svn-bisect, git-bisect

Goal: to lead us to the actual failure cause.

David Faure – Bugfixing is fun – 7/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Outline

1 Reproducing bugs

2 Simplify the problem

3 Scientific debugging

4 Observing facts

5 Assertions

6 Fix!

7 And now...

David Faure – Bugfixing is fun – 8/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Scientific debugging
It’s called computer science for a reason

Procedure

Observe failure

Make hypothesis (cause + effect)

Use hypothesis to make predictions

Test hypothesis using experiments
Experiment where the cause does not occur
Or verification of prediction with debugger

Observe experiment result
True: refine hypothesis, if possible, repeat
False: find alternate hypothesis, repeat

David Faure – Bugfixing is fun – 9/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Scientific debugging: example
Cosmic rays are rarely a good hypothesis

Example

a = computeValue();

printf("a = %d\n", a); // shows a = 0! Bug!

1 Hypothesis: a being 0 is the cause for a = 0 being
printed

2 Prediction: If a was not 0, the value of a would be
printed

3 Experiment:

Example

a = 1;

printf("a = %d\n", a);

4 Result: a = 0 is still printed. Hypothesis rejected.
David Faure – Bugfixing is fun – 10/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Scientific debugging: example
Cosmic rays are rarely a good hypothesis

Example

a = computeValue();

printf("a = %d\n", a); // shows a = 0! Bug!

1 Hypothesis: a being 0 is the cause for a = 0 being
printed

2 Prediction: If a was not 0, the value of a would be
printed

3 Experiment:

Example

a = 1;

printf("a = %d\n", a);

4 Result: a = 0 is still printed. Hypothesis rejected.
David Faure – Bugfixing is fun – 10/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Scientific debugging: example
Cosmic rays are rarely a good hypothesis

Example

a = computeValue();

printf("a = %d\n", a); // shows a = 0! Bug!

1 Hypothesis: a being 0 is the cause for a = 0 being
printed

2 Prediction: If a was not 0, the value of a would be
printed

3 Experiment:

Example

a = 1;

printf("a = %d\n", a);

4 Result: a = 0 is still printed. Hypothesis rejected.
David Faure – Bugfixing is fun – 10/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Scientific debugging: example
Cosmic rays are rarely a good hypothesis

Example

a = computeValue();

printf("a = %d\n", a); // shows a = 0! Bug!

1 Hypothesis: a being 0 is the cause for a = 0 being
printed

2 Prediction: If a was not 0, the value of a would be
printed

3 Experiment:

Example

a = 1;

printf("a = %d\n", a);

4 Result: a = 0 is still printed. Hypothesis rejected.
David Faure – Bugfixing is fun – 10/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Scientific debugging: example
Cosmic rays are rarely a good hypothesis

Example

a = computeValue();

printf("a = %d\n", a); // shows a = 0! Bug!

1 Hypothesis: a being 0 is the cause for a = 0 being
printed

2 Prediction: If a was not 0, the value of a would be
printed

3 Experiment:

Example

a = 1;

printf("a = %d\n", a);

4 Result: a = 0 is still printed. Hypothesis rejected.
David Faure – Bugfixing is fun – 10/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Scientific debugging: example
kDebug rocks, printf not so much

Example

double a;

a = computeValue();

printf("a = %d\n", a);

1 Hypothesis: the format %d is the cause for a = 0
being printed

2 Prediction: using %f, the value of a is actually
printed.

3 Experiment: printf(“a = %f\n”, a);

4 Result: works. Hypothesis verified. And in this case,
fix found.

David Faure – Bugfixing is fun – 11/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Scientific debugging: example
kDebug rocks, printf not so much

Example

double a;

a = computeValue();

printf("a = %d\n", a);

1 Hypothesis: the format %d is the cause for a = 0
being printed

2 Prediction: using %f, the value of a is actually
printed.

3 Experiment: printf(“a = %f\n”, a);

4 Result: works. Hypothesis verified. And in this case,
fix found.

David Faure – Bugfixing is fun – 11/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Scientific debugging: example
kDebug rocks, printf not so much

Example

double a;

a = computeValue();

printf("a = %d\n", a);

1 Hypothesis: the format %d is the cause for a = 0
being printed

2 Prediction: using %f, the value of a is actually
printed.

3 Experiment: printf(“a = %f\n”, a);

4 Result: works. Hypothesis verified. And in this case,
fix found.

David Faure – Bugfixing is fun – 11/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Scientific debugging: example
kDebug rocks, printf not so much

Example

double a;

a = computeValue();

printf("a = %d\n", a);

1 Hypothesis: the format %d is the cause for a = 0
being printed

2 Prediction: using %f, the value of a is actually
printed.

3 Experiment: printf(“a = %f\n”, a);

4 Result: works. Hypothesis verified. And in this case,
fix found.

David Faure – Bugfixing is fun – 11/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Scientific debugging: example
kDebug rocks, printf not so much

Example

double a;

a = computeValue();

printf("a = %d\n", a);

1 Hypothesis: the format %d is the cause for a = 0
being printed

2 Prediction: using %f, the value of a is actually
printed.

3 Experiment: printf(“a = %f\n”, a);

4 Result: works. Hypothesis verified. And in this case,
fix found.

David Faure – Bugfixing is fun – 11/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Mental check-lists
It must be one of these

A useful basis for making hypothesis is mental
check-lists.

Slot not called. Why?

signal not emitted

receiver deleted

emitter deleted

connect() not done (yet?)

connect() failed (e.g. wrong syntax; check stderr)

connect() done on other instances

disconnect() called

David Faure – Bugfixing is fun – 12/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Deduce errors
Elementary, my dear Watson

Dependencies

To isolate value origins, follow back the dependencies
from the statement in question.

Data dependencies (V2 is calculated from V1)

Control dependencies (statements executed
conditionnally)

Debuggers can’t go back...

Multiple runs (in debugger, or after adding debug
output)

Enough debug output for a comprehensive log

Backtrace

David Faure – Bugfixing is fun – 13/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Outline

1 Reproducing bugs

2 Simplify the problem

3 Scientific debugging

4 Observing facts

5 Assertions

6 Fix!

7 And now...

David Faure – Bugfixing is fun – 14/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Observing facts: kDebug
the reason for all the noise

Make output clear and complete.

Confusing message

if (!findItem(name, flags))

kDebug() << "Item named" << name << "not found";

Where am I called from?

kDebug() << kBacktrace();

At runtime:

qdbus org.kde.foo /KDebug printBacktrace

Not very useful by default, due to –hidden-visibility.
Less useful than “bt” in gdb (which shows values).

David Faure – Bugfixing is fun – 15/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

debug statements in Qt itself
the door was open, I came in and made changes

Modify Qt to:

Insert printf, qDebug/qWarning or even hand-made
qBacktrace, to see all invocations of a given
method.

Add abort() to catch warnings from bad Qt API
usage, like

“postEvent: unexpected null receiver” (often due to
NULL->deleteLater())
“Calling appendChild() on a null node does nothing.”
(kontact startup)

Getting more info from Qt. “QAction::eventFilter:
Ambiguous shortcut overload: Del”
(impossible in gdb, better use qDebug patch from
maelcum)

David Faure – Bugfixing is fun – 16/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Observing facts: gdb
Genuine Debugging Beast

Demo: gdb ./ktoolbar_unittest

Additional tips

fs (finish and step)

set print object

Don’t “break qWarning”.
Use “break qt_message_output”.

gdb konqueror

b ’KXmlGuiWindow::applyMainWindowSettings’
qs4 config.d.d->sOwner.d.d_ptr.fileName
Associating commands with breakpoint

David Faure – Bugfixing is fun – 17/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Exercise: reading a bt with an assert
Aki crashes aquí

#8 abort () from /lib/libc.so.6
#9 qt_message_output(QtMsgType, char const*) () from /usr/lib/libQtCore.so.4
#10 qFatal(char const*, ...) () from /usr/lib/libQtCore.so.4
#11 qt_assert_x(char const*, char const*, char const*, int) () from /usr/lib/libQtCore.so.4
#12 QList<QString>::operator[] (this=0xbf8a991c, i=0) at /usr/include/QtCore/qlist.h:403
#13 Aki::Irc::Socket::connectToHost (this=0x821b528) at /home/me/akiirc/irc/socket.cpp:141
#14 ServerView::ServerView(struct QWidget *) (this=0x821d9e8, parent=0x80d49b0) at /home/me/aki/serverview.cpp:79
#15 MainWindow::MainWindow(struct QWidget *) (this=0x80d49b0, parent=0x0) at /home/me/aki/mainwindow.cpp:91
#16 AkiApplication::newInstance (this=0xbf8aa630) at /home/me/aki/akiapplication.cpp:76

David Faure – Bugfixing is fun – 18/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Signals and slots
Where do I go from here?

Example

Demo: gdb ./kdirlistertest, b ’KJob::emitResult’

emit result(this);

Which slot is this going to go into?

call this->dumpObjectInfo()

Result

signal: result(KJob*)

--> KIO::JobUiDelegate::unnamed _k_result(KJob*)

--> KDirListerCache::unnamed slotResult(KJob*)

David Faure – Bugfixing is fun – 19/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

The right tool for the right bug
No hammer needed

Inconsistent behavior

Example

kfiltertest would error on byte 15. Running it again, it
errored on byte 18.
⇒ valgrind! Use of free’d data.

Performance issue ⇒ callgrind+kcachegrind

Memory leak ⇒ memcheck (valgrind) with
–leak-check=yes

Too much memory use ⇒ massif, see next slide

Which files does it open? ⇒ strace -e open

Which dirs does it look into? ⇒ strace -e access

Which file is it reading/writing right now? ⇒ strace
+ /proc/PID/fd

David Faure – Bugfixing is fun – 20/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Too much memory use
This application is sponsored by RAM makers

Recommended way to check actual memory usage

grep VmData /proc/‘pidof kcomboboxtest‘/status
VmData: 15012 kB

Using massif to see where the allocations are

alias massif=valgrind –tool=massif
–alloc-fn=’qMalloc(unsigned long)’

massif ./kcomboboxtest

ms_print massif.out.10355 | less

callgrind can also show how many times each method is
executed.

David Faure – Bugfixing is fun – 21/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Sockets
Don’t put your fingers into the socket

Example: strac’ing “kwrapper4 ksmserver” shows it’s
doing a blocking read on fd 3.
What is that, and who can write to it?

strace -p `pidof kwrapper4` says read (3

(in case of select, use the numbers in [])

/proc/`pidof kwrapper4`/fd/3 says
socket:[89758]

netstat -pn | less -p 89758 says

... 89759 11844/kdeinit4 $KDETMP/ksocket-me/kdeinit4__0

... 89758 11872/kwrapper4

⇒ kdeinit4 is the one writing on that socket.

Thanks Thiago!

David Faure – Bugfixing is fun – 22/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Outline

1 Reproducing bugs

2 Simplify the problem

3 Scientific debugging

4 Observing facts

5 Assertions

6 Fix!

7 And now...

David Faure – Bugfixing is fun – 23/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Assert expectations
The impossible cannot happen, and yet it does

Hypothesis says “the impossible actually happened”
⇒ add assert, recompile, re-run.

It will validate/invalidate the hypothesis.

It will prevent such an infection from happening in
the future.

Add method to check class invariants, call from all
places where state should be sane.
Q_ASSERT(sane()); // idea: print lots of debug before
returning false

David Faure – Bugfixing is fun – 24/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Outline

1 Reproducing bugs

2 Simplify the problem

3 Scientific debugging

4 Observing facts

5 Assertions

6 Fix!

7 And now...

David Faure – Bugfixing is fun – 25/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Fix the bug!
using crazy glue or a frying pan

David Faure – Bugfixing is fun – 26/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Outline

1 Reproducing bugs

2 Simplify the problem

3 Scientific debugging

4 Observing facts

5 Assertions

6 Fix!

7 And now...

David Faure – Bugfixing is fun – 27/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

OK the fix works, now think about...
Don’t go home just yet

how to unit-test the problem (revert!) and the fix

the initial intent of the code (svn annotate + svn
log!) and the opinion of the author

other cases affecting the same code

other bugs (that this might not fix, or introduce)

other places where this might happen

other people (explain the problem and the fix)

the users (document fix in bugzilla and in the
changelog)

the kittens (hi Luboš)

David Faure – Bugfixing is fun – 28/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Devil’s guide to debugging
666

Finding the defect by guessing

Fixing without understanding the problem

Adding workaround after the problematic code

David Faure – Bugfixing is fun – 29/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Resources
For more info

Book “Why programs fail” by Andreas Zeller

Nove Hrady Presentation on debugging
(callgrind example)
http://kdab.net/ dfaure/conf/n7y/Debugging/html

David Faure – Bugfixing is fun – 30/31

Definitions Reproducing bugs Simplify the problem Scientific debugging Observing facts Assertions Fix! And now...

Questions ?

David Faure
faure@kde.org

David Faure – Bugfixing is fun – 31/31

	
	Definitions
	Reproducing bugs
	Simplify the problem
	Scientific debugging
	Observing facts
	Assertions
	Fix!
	And now...

